
Is disability/medical conditions part of your life?

Get appropriate support for exams/coursework from

Equity and Social Inclusion

Call: 9360 6084
Email: equity@murdoch.edu.au

ICT365

Software Development Frameworks

Dr Afaq Shah

Introduction to the Unit

Teaching

Unit Coordinator : Dr Afaq Shah,

Science & Computing 1.008

Lectures: 2 hours per week (Online)

Labs: 2 hours per week (245.3.062 and online)

4

Contacts

Preferred method of contact is by email:

afaq.shah@murdoch.edu.au

Email Subject: ICT365

Response time: 24 hours (Monday to Friday:
8.30am to 4.30pm)

Other methods:

Phone: x2801

Office: 245.1.008

5

mailto:g.oatley@murdoch.edu.au

Unit description

This unit aims to provide a general understanding
of software development frameworks, and the
practical experience and skills in using an
important software development framework, with
an emphasis on language interoperability, platform
independence and software reuse using Microsoft
.NET Framework. Topics include: Common
Language Runtime, .NET Framework Class Library,
C# and other .NET languages, and application
packaging and deployment. It also discusses the
history and background of .NET and its relationship
with J2EE.

1. Demonstrate fluency in a contemporary programming
language and software development framework.

2. Implement and document an object-oriented
programming solution using object-oriented analysis
and design techniques.

3. Evaluate and demonstrate the theory and concepts of
contemporary/ industry standards programming and
design in the software development life cycle.

4. Demonstrate awareness of industry standards of
software development.

5. Critically appraise the use of various software
development frameworks.

Learning Objectives

1. Demonstrate fluency in a contemporary programming
language and software development framework.

2. Implement and document an object-oriented
programming solution using object-oriented analysis
and design techniques.

3. Evaluate and demonstrate the theory and concepts of
contemporary/ industry standards programming and
design in the software development life cycle.

4. Demonstrate awareness of industry standards of
software development.

5. Critically appraise the use of various software
development frameworks.

Learning Objectives: Assignments

1. Demonstrate fluency in a contemporary programming
language and software development framework.

2. Implement and document an object-oriented
programming solution using object-oriented analysis
and design techniques.

3. Evaluate and demonstrate the theory and concepts of
contemporary/ industry standards programming and
design in the software development life cycle.

4. Demonstrate awareness of industry standards of
software development.

5. Critically appraise the use of various software
development frameworks.

Learning Objectives: Exam

Topic Guide

This module takes a student from being an advanced
beginner to an ‘entry-level’ object-oriented programmer,
and includes topics such as the following: software
development framework, language interoperability,
platform independence and software reuse.

Additionally, software analysis, design and
implementation:

• Refactoring to design patterns;

• Design principles (open-closed, Liskov substitution, interface
segregation, dependency inversion, single responsibility);

• Design by contract;

• Test-driven development;

• Object-oriented design; principles of abstraction; inheritance;
encapsulation;

• UML (class diagrams).

Textbook 1 (available as ebook)

C# 7 and .NET Core: Modern Cross-Platform Development
- Second Edition Paperback – March 24, 2017 by Mark J.
Price (Author)

http://prospero.murdoch.edu.au/rec
ord=b2962782~S1

Publisher: Packt Publishing -
ebooks Account; 2nd Revised
edition edition (March 24, 2017)

Language: English

ISBN-10: 1787129551

ISBN-13: 978-1787129559

https://www.packtpub.com/books/c
ontent/support/27464

http://prospero.murdoch.edu.au/record=b2962782~S1
https://www.packtpub.com/books/content/support/27464

Textbook 2 (available as ebook)

http://prospero.murdoch.edu.au
/record=b2962780~S1

Publisher: Apress; 7th ed. edition
(November 11, 2015)

Language: English

ISBN-10: 1484213335

ISBN-13: 978-1484213339

https://github.com/apress/csharp-
6.0-and-.net-4.6

C# 6.0 and the .NET 4.6 Framework 7th ed. Edition
by ANDREW TROELSEN (Author), Philip Japikse

http://prospero.murdoch.edu.au/record=b2962780~S1

Textbook 3 (available as ebook)

http://prospero.murdoch.edu.au
/record=b2962781~S1

Publisher: Packt Publishing -
ebooks Account (April 25, 2017)

Language: English

ISBN-10: 1787286274

ISBN-13: 978-1787286276

https://github.com/PacktPublishing/
CSharp-7-and-DotNET-Core-
Cookbook

C# 7 and .NET Core Cookbook - Second Edition
Paperback – April 25, 2017 by Dirk Strauss (Author)

http://prospero.murdoch.edu.au/record=b2962781~S1

Textbook 4 (available as ebook)

CLR via C#

Fourth Edition

By: Jeffrey Richter

Publisher: Microsoft Press

Pub. Date: November 15, 2012

Print ISBN-10: 0-7356-6745-4

Web ISBN-10: 0-7356-6873-6

Web ISBN-13: 978-0-7356-6873-7

Print ISBN-13: 978-0-7356-6745-7

Other useful books

Whenever this finally becomes available, it will be
worthwhile getting a copy:

Language (C#) learning

C# 7.0 in a Nutshell - O'Reilly Media
https://www.amazon.com/C-7-0-Nutshell-
Definitive-
Reference/dp/1491987650/ref=pd_sbs_14_5?_enc
oding=UTF8&pd_rd_i=1491987650&pd_rd_r=8T3G
T68YRC9Z4FTBQBZE&pd_rd_w=6L6HV&pd_rd_wg
=EX7YF&psc=1&refRID=8T3GT68YRC9Z4FTBQBZE
http://shop.oreilly.com/product/0636920083634.d
o

https://mail.murdoch.edu.au/owa/redir.aspx?C=VEMQdj5zgm9uEw0EU61bW34NJkAZvIE7J1p59GeuGtVELT6g7LbUCA..&URL=https://www.amazon.com/C-7-0-Nutshell-Definitive-Reference/dp/1491987650/ref%3dpd_sbs_14_5?_encoding%3dUTF8%26pd_rd_i%3d1491987650%26pd_rd_r%3d8T3GT68YRC9Z4FTBQBZE%26pd_rd_w%3d6L6HV%26pd_rd_wg%3dEX7YF%26psc%3d1%26refRID%3d8T3GT68YRC9Z4FTBQBZE
https://mail.murdoch.edu.au/owa/redir.aspx?C=yMG3cjcaCGDlPObLh4zcSlepTsVE-KFXac02L5cFCI5ELT6g7LbUCA..&URL=http://shop.oreilly.com/product/0636920083634.do

Other useful books

Language (C#) learning

• C# 5.0: programmer's reference (Ebook available from
Library)

• Microsoft Visual C# 2013 step by step (Ebook available
from Library)

• C#: A Beginner's Tutorial (Ebook available from Library)

• C# 5 First Look (Ebook available from Library)

• C# 5.0 All-in-One For Dummies (Ebook available from
Library)

• Head First C#, 3rd ed (Ebook available from Library)

Other books

Software Engineering

• Professional Test Driven Development with C#:
Developing Real World Applications with TDD (Ebook
available from Library)

• Design patterns in C# (Check Shelf, South St Campus
South Wing Level 4, 005.133 MET 2004)

Other books

Additional features

• Beginning ASP.NET 4.5 in C# and VB (Ebook available from

Library)

• Professional Windows 8 Programming: Application Development
with C# and XAML (Ebook available from Library)

• Professional Cross-Platform Mobile Development in C# (Ebook
available from Library)

• Professional Android Programming with Mono for Android and
.NET/C# (Ebook available from Library)

• Professional iPhone Programming with MonoTouch and .NET/C#
(Ebook available from Library)

• Functional programming in C#: classic programming techniques for
modern projects (Ebook available from Library)

Lectures

• 11 topics plus 1 revision, approximately
one topic per week (some topic may take
slightly more than one week)

• Lectures: cover theory and programming

• Updated lecture notes for each topic will
be posted in the Unit LMS on weekly basis

• Lecture notes will indicate the required
readings

• Read both Lecture Notes and the required
book chapters and online materials

19

Week Topic

1 • Introduction to the Unit
Overview of:

• Microsoft .NET Framework
• Visual Studio, C#
• The CLR
• Classes and Object Orientation

2 • Object Orientation
• Inheritance
• C# language features
• Packages and Namespaces
• Generics and collections

3 • ADO.net

4 • Introduction to Design patterns
• The UML
• Multithreading and GUI’s

5 • Design principles: SOLID
• Design by contract
• Platform independence and software reuse

Week Topic

6 • Refactoring
• Refactoring support in IDE/tools

7 • LINQ

8 • Collections and Generics

• Exception Handling

9 • CLR
• Other .NET languages
• Language interoperability and platform independence
• Packaging and deployment
• CLR versus JVM
• Visual Studio versus Eclipse/Netbeans

10 • XAML, (Cross-Platform) Mobile Development
• Functional programing

11 • XAMARIN and Cross Platform Mobile Apps

12 • Unit Review and Conclusion

Labs

• There are 11 labs, starting from Week 2.

• Labs: using tools and writing programs

• The lab exercises are designed to

• re-enforce materials in the lectures and
to check on your understanding of the
materials covered

• gain necessary knowledge and
programming skills incrementally for the
two major assignments

22

Lab Assignments

• Certain lab exercises that illustrate core concepts
required for the major assignments will be
assessed, and the total will be worth 10%.

• These will be indicated through the LMS, and will
be at approximately 3 milestone stages, for
instance Weeks 4, 7 and 10.

• These assessable lab exercises are known as the
Lab Assignment for the topic. The requirements
for the assessment will be described in the lab
sheet of that topic. The lab sheets will be posted
in the Lab Sheets page of the Unit LMS week by
week.

Lab Assignments

The deadline for each Lab Assignment is Friday
(5PM) of the same week. For example, Lab 4 is
scheduled in Week 4, therefore the Lab
Assignment for Lab 4 is due on Friday of Week
4.

24

Major Assignments

There are two Major Assignments

Both Major Assignments (1&2) consist of:

• construction of a .NET solution

• theory and programming questions

The deadlines for the two major assignments will
be given in the Teaching Schedule page of the
Unit LMS.

25

Major Assignments

Major Assignment 1

concerns about the design and implementation of a
.NET solution using C# and .NET Framework. The
assignment will include a report style critical
reflection component.

This will be a discussion of the choice of
design/programming decisions made, possibly to
include: generics and collections, design
patterns and principles.

Major Assignments

Major Assignment 2

concerns about the design and implementation of a
.NET solution using C# and .NET Framework. The
assignment will include a report style critical
reflection component.

This will be a discussion of the choice of
design/programming decisions made, possibly to
include: unit testing, refactoring, comparison
with VB.net, software reuse.

Assessments

Lab Assignments: 10%

Major Assignment 1: 20%

Major Assignment 2: 30%

Final examination (closed book):
40%

28

Determination of Your Final Grade

Your final grade for the unit will be reported as a
letter grade and a mark. In order to pass the
unit you must

1. have an aggregate score for the combined
assessment of 50% or better, and

2. achieve a satisfactory performance in the
final examination. A satisfactory
performance is normally considered to be

50% or higher.

29

Unit LMS

The Unit LMS contains nearly all unit materials.

- Unit Announcements

- Unit Information

- Lecture Notes

- Lab Sheets

- Assignment Questions

- Unit Readings

- Useful Links

30

Unit Announcements

The Unit Announcement page contains
important information about the unit,
particularly any changes to the deadlines,
lecture and lab time or venue, cancellation of
lectures or labs. I use this page to keep all
students informed of what is happening about
the unit.

This is the only way I will distribute unit-wide
notices. I will not send separate notices to
individual students for such unit-wide notices.

You are required to check this page regularly,
at least once per week.

31

Unit Announcements

32

When an announcement has been made, we
will assume that you are aware of it.

Accessing Teaching Materials

You can access lecture notes, sample
programs, lab sheets, and major
assignment questions from the Unit LMS.

33

Submission of Assignments

• The assignments must be submitted to the Unit LMS.
No other forms of submission are acceptable.

• You can only submit an assignment within five days of
the published deadline. Afterwards, you will not be able
to submit your major assignment (we will not accept it
anyway, unless there was a prior agreed arrangement
with the unit coordinator).

• Assignments submitted after the due date without an
extension having been granted will incur a flat 10%
penalty per day late or part thereof, including
weekends. Note that assignments are not normally
accepted if more than five days late.

34

Cheating and Plagiarism

What You Need to Know

The following web site contains extremely important
information (including assessment and academic
integrity) and you must read it carefully:

http://our.murdoch.edu.au/Educational-
technologies/What-you-need-to-know/

36

http://our.murdoch.edu.au/Educational-technologies/What-you-need-to-know/

Our Expectations

• Students enrolled in ICT365 have excellent
programming skills

• Willing to put extra time and efforts

• Motivated to do research to solve programming
problems

37

Software

Microsoft Visual Studio Professional
2017 or latest version

Available to students through the Microsoft Alliance
(Dream Spark, Imagine, e5onthehub etc.)

38

Topic 1
Introduction to the .NET

Framework
C#

Objects and classes

Software Development Frameworks

• a collection of

• programming languages,

• re-usable software components

• a set of software tools

• allows its users to create

• high quality application

• quickly and efficiently

• Many software development frameworks,

• general purpose and

• for developing special types of applications

In this unit, we will focus on one very important
general purpose software development framework -
Microsoft .NET Framework.

What is .NET Framework?

• .NET is the term Microsoft used to describe its (not
so) new software development initiative.

• An important software development framework:

- At the heart of it is a Common Language Runtime

- And a set of pre-compiled class libraries

- A set of programming languages

- C#,

- Visual Basic.NET,

- C++ and

- Visual Studio.

CLR

• Common Language Runtime

• loads the .NET assembly code,

• compiles it on the fly into the native machine
code via its Just-in-Time compiler (JIT)
executes it

• also manages the memory of the running
program.

• Any computer system with a CLR could run the
.NET assembly program

• CLR is also called a Virtual Execution System
(VES).

• Similar to Virtual Machine in Java.

Traditional Programming Model

C++ source
code with

calls to C++
library

Assembly
code for one

CPU
architecture

Object code for
one CPU

architecture

C++ Library for
the same CPU
architecture

Executable
program for

that CPU
architecture

VB source
code with
calls to VB

library

Assembly
code for

another CPU
architecture

Object code for
another CPU
architecture

VB Library for
another CPU
architecture

Executable
program for

that CPU
architecture

One
CPU

Another
CPU

.NET Programming Model

C# source
code with

calls to FCL

.NET
Assembly

code
FCL

VB.NET
source code
with calls to

FCL

.NET
Assembly

code

CLR

CLR

Execution of any .NET assembly on different computer systems with

possibly different operating systems and/or CPU architectures

FCL

.NET Framework implemented
on one computer system, eg

Windows 7

.NET Framework implemented
on a different computer system

such as Linux

Platform Independence

• A .NET program is compiled and deployed as an
architecture independent assembly code.

• Format of the assembly - CLI standard.

• The assembly code would run on any system
(Microsoft Windows, Linux, Mac OS X etc)

• At least in theory, .NET programs are platform
independent.

• In reality???

• There are attempts to implement CLI and FCL on
other platforms (eg, Linux and Mac OS X) such as
mono project (www.mono-project.org).

45

First .NET Program

Here is our first .NET program using C# - the famous
“Hello, world!” program:

46

// Hello.cs

//

// this is our first C# program

public class Hello

{

public static void Main(string[] args)

{

System.Console.Out.WriteLine("Hello, world!");

}

}

Compile and Run Program

Use a text editor such as Notepad++ to create
the source code.

Save the source code into a file with .cs
extension name, such as “Hello.cs”.

Compile it with C# compiler csc from
Command Prompt:

csc Hello.cs

Execute the program Hello.exe by typing Hello
in Command Prompt or double clicking it.

Note that csc is usually under directory:
c:\WINDOWS\microsoft.NET\Framework64\v4.0.30319\

47

http://microsoft.NET

Simple Types

Reserved word Aliased type
sbyte System.SByte
byte System.Byte
short System.Int16
ushort System.UInt16
int System.Int32
uint System.UInt32
long System.Int64
ulong System.UInt64
char System.Char
float System.Single
double System.Double
bool System.Boolean
decimal System.Decimal

48

Control Structures

C# provides a rich set of control structures:

if statements

switch statements

while loop

for loop

foreach loop

break

continue

49

“if” Statements

if (x>0 && x<=10) {
case = 1;

}
else if (x<=0) {

case = 2;
}
else {

case = 3;
}

50

“switch” Statements

string grade = Console.ReadLine();
switch (grade.ToUpper())
{

case “P”:
System.Console.Out.WriteLine(“Pass”);
break;

case “N”:
System.Console. Out.WriteLine(“Fail”);
break;

default:
System.Console. Out.WriteLine(“Supp!”);

}

51

“while” Statements

int n=0;

while (n<10)

{

System.Console.Out.WriteLine(“{0} “, n*2);

++n;

}

52

“for” Statements

for (int i=0; i<10; ++i)

{

System.Console.Out.WriteLine(“{0} “, i*i);

}

53

“foreach” Statements

Used to iterate through an array. Syntax:

foreach (element_type id in array) { . . . }

Eg

string[] names = {“Peter”, “Emily”, “David”, “Nik”};

int i=0;
foreach (string n in names)
{
System.Console.Out.WriteLine(“Name{0}: {1} “, ++i, n);

}

Should output:

Name1: Peter
Name2: Emily
Name3: David
Name4: Nik

54

break and continue statements change the control

flow of loop statements.
break statement will jump out of the enclosing loop

statement.
continue statement jump to the begin of the

enclosing loop statement.

55

“break” and “continue” Statements

Classes

A C# program consists of mainly a collection of
classes

A class encapsulates a set of members such as

constants

fields

methods

constructors

A class provides a blueprint for one type of objects

56

Fields

A field in a class defines a piece of data (can be as
simple as a single integer or as complex as an
object requiring mega bytes of memory)

Example:
string name;

uint number;

57

Methods

A method in a class defines an action. A
method has a return type (or void), a
signature, and a body.

A method usually acts on the data stored in
its containing object.

The following methods have different
signatures
int Add(int x, short y) { ... }

int Add(float x, int y){ ... }

int Add(int x, short y, short z) { ... }

58

Other Class Members

Constants:

Constructors:

For use to initialise an object during object
creation.

Every class has a constructor.

59

Class Example

The following program consists of two classes,
Student and Program.

Assume that the class Student models a student

The class Student contains the following members:

two fields: myName and myNumber representing a
student’s name and his/her student number.

one instance constructor which has the same name
as its class and is used during the creation of a
student object from the Student class

a method PrintDetails that is used to print the
student’s details.

60

an instance constructor

a method

two fields

class name

the Main method
and it is static! No
need to create an
object from class
Program in order
to call this Main
method!

local variable s, not
a field!

namespace

A Class and its Objects

• Object oriented programming focuses on

• modelling objects and

• their interact with each other.

• A C# object

• computer representation of a real-world object

• A class describes the common properties of a type
of objects

62

Object Instantiation

• Object created from class

• The creation of an object from a class is called
instantiation of the class

• In the previous example, we create a Student
object using the “new” operator.

Student s = new Student(“Joe Blow”, 12345678);

• Invoked the method PrintDetails via object
reference

s.PrintDetails();

63

Instance Constructor

• Used to initialise the object during the object creation.

• In class Student, the member

public Student(string name, uint number)
{
myName = name;
myNumber = number;

}

is an instance constructor.

• The constructor looks like a method

• no return type

• its name is the same as the class name.

• The constructor is used in the class instantiation:

• s = new Student(“Joe Blow”, 12345678);

64

Static Members

A class may contain static members such as static
fields and static methods.

A static member can be used directly from the class
without creating an object first.

A static member is qualified by the reserved word
static.

A member that is not static is known as instance
members

65

Static Field vs Instance Field

• A static field is shared by all objects of the class,

• Contrary to this, one copy of instance field is
created for each object

• If a class declared one instance field and one
static field,

• you have created 10 objects from the class,

• 10 distinct copies of the instance field, one in
each object, in the memory.

• only one copy of the static field in the memory.

• All 10 objects will share this copy of static field.

66

Static Member Example

Assume all students are from the same university.
We can represent the student’s university by using
a static field.

We can declare a static method that will set the
university value to the static field.

Note that a static method can only access static
fields. It cannot access any instance fields (think
why).

The modified code is listed in the next two slides

67

two instance fields

a static field

a static method, note this
method can only access static
fields, not instance fields

an instance method, note this
method can access static as
well as instance fields

We access the static method
SetUniversity directly using
the class name, not object
reference!But we cannot access this

instance method using the
class name. We use object
reference instead.

Further Readings

Familiarise yourself with the recommended texts
from the library.

Download each of them using the appropriate
“reader” software.

(no need to buy them!)

70

What to do next week?

Look at the C# language

Object orientation

71

